### Problem:

**From Wikipedia :**

In computer science, the Largest sum contiguous subarray is the task of finding the contiguous subarray within a one-dimensional array of numbers which has the largest sum. For example, for the sequence of values −2, 1, −3, 4, −1, 2, 1, −5, 4; the contiguous subarray with the largest sum is 4, −1, 2, 1, with sum 6.

### Solution :

There are multiple solution to solve this problem:

#### Solution 1:

Use two loops and try each combination of array elements to find maximum sum.

Time complexity : O(N^2)

**💻 Awesome Tech Resources:**

- Looking for ⚒️ tech jobs? Go to our job portal.
- Looking for tech events? Go to tech events 🗓️ Calendar.️

#### Solution 2:

**Kadane ‘s algoritm**

I have discussed Kadane ‘s algorithm in previous post. You can refer it.

Time complexity : O(N)

#### Solution 3:

**Dynamic Programming:**

You can use dynamic programming to solve this problem.

Lets say array be arr[] and maximum sum upto index i is maxSum(i)

Logic which can be used for dynamic programming:

1 2 3 |
maxSum(i) = Max of (maxSum(i-1) + a[i] , a[i]) |

So it can be define as

Max sum at index i is maximum of (max sum upto i-1 + current element , current element)

**Java code :**

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
public int dynamicProgramForMaxSubArray(int[] arr) { int[] result = new int[arr.length]; result[0]=arr[0]; for (int i = 1; i < arr.length; i++) { result[i]=Math.max(result[i-1]+arr[i], arr[i]); } int maxSumArray = result[0]; for (int j = 1; j <result.length ; j++) { if(maxSumArray<result[j]) maxSumArray = result[j]; } return maxSumArray; } |

Time complexity : O(N)

### Java Program to find largest sum contiguous subarray:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
package org.arpit.java2blog; public class MaximumSubArrayMain { /* Dynamic programming algorithm to find largest sum continuous subarray */ public int dynamicProgramForMaxSubArray(int[] arr) { int[] result = new int[arr.length]; result[0]=arr[0]; for (int i = 1; i < arr.length; i++) { result[i]=Math.max(result[i-1]+arr[i], arr[i]); } int maxSumArray = result[0]; for (int j = 1; j if(maxSumArray<result[j]) maxSumArray = result[j]; } return maxSumArray; } public static void main(String args[]) { int arr[] = { 1, 8, -3, -7, 2, 7, -1, -9 }; MaximumSubArrayMain maxSum = new MaximumSubArrayMain(); System.out.println("Largest sum continuous subarray is " + maxSum.dynamicProgramForMaxSubArray(arr)); } } |

1 2 3 |
Largest sum continuous subarray is 9 |